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Abstract— The ability to decide and adjust actions according
to motion prediction of dynamic obstacles offers a flexible
planning scheme and ampler reaction time to avoid potential
impact. Prediction-based collision avoidance implies a two-
stage decision-making process from motion prediction to action
planning. One of the challenges in motion prediction is the
movements of objects are usually non-deterministic and gov-
erned by multimodal models. Many studies have been made
on motion prediction of dynamic obstacles and action planning
for mobile robots separately. The objective of this work is to
explore their coherence in terms of multiple future predictions
by combining a data-driven motion prediction approach with
a model-based control strategy. More specifically, we integrate
motion prediction from deep learning models, Mixture Density
Networks (MDNs) with a Non-linear Model Predictive Control
(NMPC) framework. The deep learning models produce the
multimodal probability distribution of future positions of dy-
namic obstacles, which is utilized by the MPC controller as
a constraint. We show via simulation that the selected model
provides valid predictions of motion in a dynamic environment.
The prediction result endows the controller with the capability
to avoid dynamic obstacles in advance.

I. INTRODUCTION
Humans can adjust their actions to avoid collisions based

on instantaneous processing of observations and past ex-
periences. On the contrary, a mobile robot cannot achieve
collision avoidance without a sophisticated process, which
includes information collection, motion prediction, path plan-
ning, online trajectory correction, and control. In this work,
we consider a setup where mobile robots acquire global
information using multiple cameras mounted in the ceiling
of a factory or warehouse, as shown in Fig. 1. Top-view
camera configurations for mobile robots have previously
been presented in [1], [2]. A vision-based omniscient system,
consisting of multiple top-view cameras in the ceiling and
processing units, provides an extensive global vision to
mobile robots and thus enables them to plan and behave in a
proactive manner. In this work, we focus on how to handle
the information provided by a multi-camera setup in a deep
learning fashion to achieve motion prediction of different
dynamic obstacles and guide a model predictive controller
for online trajectory correction.

Path planning algorithms for mobile robots operating in
static environments are quite mature and use grid-based or
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Fig. 1: Research background: A top-view vision system with
multiple cameras with an overlapping field-of-view ensuring no
blind areas. The vision information from cameras is used to predict
motions of dynamic obstacles such as pedestrians.

graph-based maps [3], [4], while planning in case of dynamic
obstacles, such as humans, is still an active research topic due
to the high complexity and uncertainty of the movement and
intention of obstacles.

Motion prediction of dynamic obstacles is important for
collision avoidance of mobile robots. In [5], a thorough
overview of motion prediction depicts the development of
relevant algorithms. Most studies focus on the prediction of
a single hypothesis or probability distribution that is unsta-
ble or not comprehensive enough. Recently, deep learning
methods [6], [7], [8] have been explored to overcome the
rising complexity of motion prediction tasks in the dynamic
environment. Multiple hypothesis prediction [9] uses a spe-
cial meta loss for Convolutional Neural Networks (CNNs) to
learn multiple futures. In [6], the authors combined the meta
loss and MDNs [10] to overcome the limitations of MDNs,
which are model collapse and hypotheses degeneration. A
related approach is model-based methods, such as building
Long Short-Term Memory (LSTM) networks as models for
pedestrians [7]. The usage of deep learning makes the predic-
tion of non-deterministic motions of dynamic obstacles more
robust and brings the extension of predicting the potential
multiple choices of future motions.

Given a prediction of future motions of the uncontrolled
agents, the problem is to plan trajectories such that the robot
can visit target destinations without any collisions. Existing
works either regard dynamic obstacles as temporary static
obstacles and execute a path replanning with global path
planning algorithms such as the rapidly-exploring random
tree algorithm [11], or simplify dynamic obstacles into plain
models such as the constant velocity (CV) model with local
trajectory planning algorithm such as [12], [13]. In recent
years, as the computing power rises prominently, the Model
Predictive Control (MPC) method has become feasible for



online trajectory correction [14]. However, a similar defi-
ciency is that motion predictions of dynamic obstacles are
based on simple motion models that do not take multiple
future motion predictions into account.

In this paper, we propose a predictive dynamic obstacle
avoidance method for mobile robots, integrating motion
prediction information, where multiple future positions are
possible, as MPC constraints to obtain a wider prediction
scope for the controller. This method yields a global predic-
tive control behavior in terms of dynamic obstacles by com-
bining Mixture Density Networks (MDNs) for estimation of
multiple future positions, with the Model Predictive Control
(MPC) approach. We show that without the multiple future
predictions some potential collisions cannot be foreseen
thus leading to safety issues. Using simulation, we present
that by applying our method the mobile robot can avoid
collisions with dynamic obstacles which have complex non-
deterministic motion patterns. The approach is evaluated
against motion models computed using a linear Kalman filter
assuming constant velocity.

II. PRELIMINARIES

We start by introducing Mixture Density Networks
(MDNs) that use learning-based methods to estimate multiple
future possible positions, of the uncontrolled agents, for
different time-steps into the future. We then introduce the
nonlinear model predictive control methods that we use to
generate a trajectory-based on estimated future positions of
the uncontrolled agents.

A. Mixture Density Network

Mixture Density Networks (MDNs) [10] aim at estab-
lishing the potential bond between the d-dimensional input
x ∈ Rd and the c-dimensional output y ∈ Rc by estimating
the output in a form of a probability distribution p(y|x).
MDNs presume the targeted output is a mixture density
model:

p(y|x) =

m∑
i=1

αi(x)φi(y|x) (1)

consisting of m components φi weighted through αi(x). For
convenience, the subscript i will be omitted if there is no
ambiguity. In [10], each component φ(y|x) is a Gaussian
distribution and the overall distribution is a Gaussian Mixture
Model (GMM). However, other parameterized probability
distributions can also be employed. For example, in [6], the
authors implemented MDNs with Laplace distributions.

MDNs obtain the output through two steps as shown in
Fig. 2. The Body is essentially a feature extractor. Fig. 2
contains a multi-layer perceptron but it can be replaced by
other models that generate a characteristic vector z. The
Head transfers the characteristic vector to the probabilistic
vector p containing all the probabilistic parameters of the
selected distribution model such as GMMs. Here, the head
is the exact part of MDNs.

φGMM (y) =
1√

(2π)c|Σ|
exp

(
− (y−µ)TΣ−1(y−µ)

2

)
(2)

𝒙 𝒛 𝒑

Body - Any model Head - Special network

Fig. 2: The concept of MDNs. The Body takes the input x and
generate a characteristic vector z. The Head transfers z into the
probabilistic form p.

In spite of various types of probability distributions, the
Gaussian distribution (2) is one common choice as the
component in MDNs. In this work, we only use Gaussian
components, hence hereafter MDNs are MDNs with GMMs.
In a GMM, φ as in (2) is parameterized by the mean value
µ(x) and standard deviation σ(x). The covariance matrix
Σ is assumed to be a diagonal matrix and represented as a
vector σ consisting of all the diagonal elements in Σ. This is
not necessarily true in reality but it is a reasonable simplifica-
tion to reduce the complexity of the model. Together with the
weight vector α = (α1, α2, . . . , αm)

T , p = (αT ,µT ,σT )T

forms the output of MDNs.
The Head guarantees that the final output satisfying cer-

tain conditions via special layers, which produces a valid
probability representation. GMMs require three parts: the
mean, variance, and weight for each component. There are
properties for these probabilistic parameters to hold. The
sum of all weights should be one and this can be achieved
by applying a Softmax layer [10]. There is no special
requirement for the mean value; therefore a regular linear
layer is appropriate. As for the variance, since it is a scale
parameter, taking the exponential of the characteristic vector
is effective.

B. Non-linear Model Predictive Control

Model Predictive Control (MPC) solves constrained op-
timization problems given a state-space representation of
the controlled plant. Non-linear MPC (NMPC), as a variant
of MPC, is normally used when the plant is non-linear.
Equations (3a), (3b), (3c) are a regular mathematical form
of MPC [15], and the hat notation is used to denote the
estimated state and control signals:

min
û0,...,ûN−1

VN (ŝ, û) =

N−1∑
j=0

l(ŝj , ûj) + Vf (ŝN ) (3a)

s.t. ŝk+1 = f(ŝk, ûk), k = 0, 1, . . . , N − 1 (3b)
g(ŝ, û) ≤ 0 (3c)

where l(·) is the loss function for the state and input in every
step, Vf (·) is a final cost for the last state, f(·) is the motion
model of the controlled mobile robot, and g(·) models the
constraints. The mathematical form shows three superiorities:
NMPC deals with non-linear models, it considers all states



and input within the prediction horizon, and it includes
constraints. In our case, the control horizon is set to be equal
to the prediction horizon, and will be denoted by N . s is the
state vector and u is the control sequence.

In this work, we use a differential drive robot but the non-
linear setting allows other types of non-holonomic and holo-
nomic robots, and for control of a fleet of robots that have,
for example, distance constraints between them. We use the
Proximal Averaged Newton-type method for Optimal Control
(PANOC) [16], [17] for solving the NMPC problems, as this
method is able to efficiently and in a robust way solve the
specified NMPC problems.

III. APPROACH

Our approach starts with the training of MDNs. The
trained neural network produces multimodal predictions in
a form of GMMs. We treat the output from the MDN as
individual Gaussian distributions and use ellipsoids to repre-
sent them. These ellipsoids are then included as constraints
in the NMPC formulation.

A. Motion learning and prediction

MDNs are numerically vulnerable under high dimensional
input [9], [18], thus it is important to choose the form of
input carefully as well as the architecture of the Body, and
implement proper preprocessing. To reduce the computation
complexity, and reserve more time for trajectory correction,
we select an MLP model as the Body. This means the input to
the network is a numerical vector. There are some common
options to select elements for the input, such as position,
velocity, orientation, etc. Our input is composed of three
parts. The leading part is the positions of the target, including
the coordinates of current and past κ time instants. The later
element is the prediction time offset T = 1, 2, . . . , Tmax,
indicating how far we want to obtain the prediction into
the future. The last element is the type of this object that
is defined by a non-negative integer. To mitigate the risk
of model collapse, as discussed in [18], all values about
positions should be normalized. We use another alternative
that is adding Batch Normalization (BN) layers in the Body
to achieve the same effect. The dimension of the output p is
determined by the preset number of components times five
(one weight, two means, and two variances). Fig. 3 shows
the overall architecture of our MDN.

Furthermore, MDNs are also subject to degenerate predic-
tions [6], [9]. The number of hypotheses is a special hyper-
parameter in MDNs and set to be a reasonably sufficient
large value and usually larger than the actual number of
modalities, or motion modes in our case. Once all modes
are occupied, other hypotheses will not be updated anymore,
thus degenerate. The degenerate components are regarded
as redundant information and abandoned before the next
step. Assuming m̃ components stay, the weight vector α
needs to be renormalized. Denote the weight vector after
renormalization as α̃ = (α̃1, α̃2, . . . , α̃m̃)T . Finally, all
position-related outputs need to be restored to the original
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Fig. 3: The architecture of our MDN. The left part is the body of
MDN taking the input vector x, which is a MLP consisting of a
stack of linear layers followed by the Batch Normalization (BN)
layers and ReLU activation. The right part is the head transferring
the characteristic vector z from the body into the distribution
parameters α, µ, and σ. We use 10 hypotheses. The dimension
of the output, p is 10 · 5.

size before the rescaling if it is normalized ahead for training.

B. Prediction Modelling

Through the MDN, the predictions of the future positions
of the targeted object are obtained in the form of GMMs.
However, it is intricate to formulate the Gaussian mixture
density as an MPC constraint due to the irregular contour. We
consequently treat the output as several individual Gaussian
distributions, and every single distribution can be described
by an ellipse with the mean value as the centre while the
larger and shorter variances are defined as the major and
minor axes, respectively. The weight for each component is
used to adjust the extension of the ellipse’s border.

To model this information as control constraints, all the
ellipses require expansions. The axis parameters of ellipses
are scaled from σ to (2+ α̃)σ, where α̃ is the corresponding
renormalized weight. This ensures more than 95% confi-
dence in covering the true position. The prediction from
MDNs only focuses on the point-mass model of the object
without considering its shape. Therefore, every ellipse needs
to be enlarged according to the size of the dynamic obstacles
which is assumed to be known.

C. Trajectory planning

The modelling for mobile robots adopts the kinematic
scheme, defining the state vector s = (sx, sy, θ)

T ∈ R3

and the input u = (v, ω)T ∈ R2:

f(sk,uk) =

sx,k + vk cos(θk)∆ts
sy,k + vk sin(θk)∆ts

θk + ωk∆ts

 (4)

The input uses linear speed v ∈ R and angular speed ω ∈
R. The state vector s contains the 2D position coordinates
(sx, sy) and the orientation θ of the target. k is the time
step and ∆ts is the sampling time. The cost function [19]
consists of three items: the cross-track error Jcte weighted
by qcte, the speed deviation cost Jv weighted by qv , and the



acceleration cost Jacc weighted by qacc. For the instant k,
Jcte,k calculate the shortest distance between the predicted
state ŝk and the reference path. Jv,k penalizes the deviation
of speed from the reference speed. Jacc,k penalizes on the
difference of input, ∆û = ûk − ûk−1.

Let the set Ol contain all static obstacles, and let r be
the safe distance that mobile robots should keep from static
obstacles, for example, set r as the maximum distance from
the center of the robot to any point on the robot. Let Od,k
be the set of all dynamic obstacles at time-step k. For a
dynamic time-step k, this draws an area Dk in (5) where
mobile robots are forbidden to enter. For convenience, we
omit subscripts k. A dynamic obstacle o has the form of a
ellipse defined by the centre (ox, oy), axes (ow, oh), and a
rotation angle oα. We assume the predicted distribution has
a diagonal covariance matrix, thus the heading oα can be
ignored. So o = (ox, oy, ow, oh)T ∈ R4.

D = {(x, y) | ∀o ∈ Od,
(x− ox)2

o2w
+

(y − oy)2

o2h
≤ 1} (5)

The trajectory planning task can be formulated as the fol-
lowing optimization problem. Given s0 as the initial state:

min
û0,...,ûN−1

N−1∑
k=0

Jcte,k + Jv,k + Jacc,k (6a)

s.t. ŝ0 = s0 (6b)

||(ŝx,k, ŝy,k)T − (ox, oy)T ||2 ≥ r, ∀o ∈ Ol
(6c)

(ŝx,k, ŝy,k) /∈ Dk (6d)
ŝk+1 = f(ŝk, ûk) (6e)
ûk ∈ [umin,umax] (6f)
∆û ∈ [u̇min∆ts, u̇max∆ts] (6g)

The constants umin, umax, u̇min, and u̇max are the
limitations of the input and the derivative of input. The final
cost Vf (sN ) is set to 0. The nonlinearity in constraints (6c)
and (6d) can be directly handled by the nonlinear model
predictive controller.

IV. RESULTS

In this section, we present the synthetic dataset and the
training details for the MDN. A modified Mahalanobis dis-
tance is introduced for evaluating the performance of MDNs,
which is compared with KFs. We conclude this section by
showing how motion prediction is used during trajectory
planning for two different scenarios. The evaluation code
for the motion prediction is available1.

A. Dataset and training

For training MDNs, we implemented a simulator to gener-
ate a synthetic dataset, which is visualized in Fig. 4. We refer
to this as the Factory Traffic Dataset (FTD). It facsimiles a
factory scene within a 10×10 meters square area, including

1https://github.com/Woodenonez/multimodal_motion_
prediction
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Fig. 4: Visualization of the synthetic factory traffic dataset (FTD).

three basic semantic zones: sidewalks, lanes, and working
areas. Three types of entities, pedestrians, forklifts, and
mobile working platforms, are simulated. The sizes of objects
are based on real-world situations. There is one special
lane in the middle representing the assembling line only for
mobile working platforms, where platforms move slowly and
periodically from the left side to the right. Pedestrians mainly
walk within the pavements but may cross the lanes at certain
locations. Working areas are not accessible for any objects,
while pavements are not drivable for any non-human objects.
In the end, the traffic rules are simplified as mobile platforms
have the highest priority to pass and pedestrians will always
wait for other types of objects. What is more, forklifts decide
randomly on which one passes first as long as no collisions.
Pedestrians or forklifts may appear at any entrances and aim
at one of the other exits randomly.

We run the simulation for 2000 seconds with 0.2 second
sampling time, and simulate 1200 trajectories for training.
With ∆ts = 0.2s, κ = 5, Tmax = 20, and m = 10, we have
0.9 million samples for training. In this work, we use the
negative log-likelihood (NLL) loss for training [6], [10].

B. Motion prediction performance

We compare our MDN model to a CV based Kalman filter
(KF). Fig. 5 shows the advantage of MDNs compared to
KFs, which is the multimodality of the output of MDNs.
The dynamic obstacle reveals a distinct tendency to turn, and
the MDN captures the potential while keeping the possibility
that the object keeps moving straight. By contrast, the KF
counts on the motion model for predictions thus exhibits slow
reactions to changes and only has a single prediction.

A prediction from MDNs is a probability distribution, but
the ground truth is a pair of coordinates indicating the future
position of the centre of the targeted object. The Mahalanobis
distance (MD) [20] is a metric to measure the distance from

https://github.com/Woodenonez/multimodal_motion_prediction
https://github.com/Woodenonez/multimodal_motion_prediction
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Fig. 5: Comparison between the predictions from the KF and the
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the potential turning behavior. This is the closest prediction to the
future ground truth. The KF only provides one prediction according
to the motion model, which deviates from the ground truth severely.
The i-σ area is the ellipse area with i · σ as its axes.

a distribution to a point and is defined as:

DM (x|µ,Σ) =
√

(x− µ)TΣ−1(x− µ) (7)

where µ and Σ are the mean vector and the covariance
matrix. DM (x) provides a measurement between a distri-
bution and a point. To apply this concept for the multimodal
case, we propose a weighted MD (WMD) metric, see (8), in
which m̃ is the number of components after eliminating the
degenerate ones and α̃i is the corresponding renormalized
weight. Components with weights lower than 10% of the
maximal weight are regarded as degenerate.

DWM (x) =

m̃∑
i

α̃iDM (x|µi,Σi) (8)

We evaluate the performance between MDNs and KFs based
on the WMD metric using two datasets, test 1 and test 2.
Given Tmax = 20, in test 1, we generate 5000 samples of
pedestrians and forklifts for T = 1, . . . , Tmax. The second
data-set, test 2, adopts 5000 forklift samples for T = Tmax.
The reason why no mobile platform is included is that they
move at constant velocity thus not discriminative for KFs
and MDNs. Test 2 only contains forklift samples with further
predictions into the future because these samples reflect the
multimodal feature of motions.

The KF evolves according to historical positions and
then predicts a future position using a CV model. In this
work, we assume and set that the covariance matrix of
the KF does not change during prediction steps to avoid
the excessive increase. The result in Fig. 6 and table I
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Fig. 6: The histograms present WMDs on test data from the
corresponding sets for the KF, MDN, and the first component of
MDN. This is a truncation from 0 to 10. The first test set contains
5000 samples of pedestrians and forklifts with T = 1, 2, . . . , 20,
and the second one picks up 5000 samples of forklifts with T = 20.

shows the average values of the WMD. MDN-1 only takes
the most possible prediction with the largest weight from
our MDN into account. From this result, the KF has a
better score in the first set due to the fact that in most
situations the objects move straight. But it already shows
that the MDN outperforms the KF within the high WMD
section, where the changes of movement directions happen.
This is confirmed by implementing the second test with
more turning behaviors. The result is reasonable since the
KF cannot foresee the potential of the object changing
the current motion pattern. The result shows that the most
confident prediction of the MDN follows the ground truth
well. However, this may not hold when motions of dynamic
obstacles are more complicated. For example, if there are
several motion modes with similar possibilities to happen,
the most confident prediction of the MDN will have a high
possibility to be incorrect, thus to consider several possible
modes will be necessary during the trajectory planning.
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Fig. 7: The upper half, Fig. 7a, 7b, 7c, and 7d, shows the path adjusted by the NMPC controller without any prediction, which leads
to a collision with the mobile platform. The lower half, Fig. 7e, 7f, 7g, and 7h, shows the path adjusted by the NMPC controller with
predictions from the MDN, which avoids the collision successfully.

C. Trajectory planning with multimodal motion predictions

We now address how motion prediction affects trajectory
planning. Considering the prediction and control horizon N ,
we insert the prediction from the MDN to the corresponding
horizon step so that the controller plans the trajectory in
advance to detour around the dynamic obstacles. We present
two planning scenarios to demonstrate the joint outcome of
NMPCs and MDNs. In the first scenario, shown in Fig. 7,
a mobile robot tries to avoid colliding with an uncontrolled
mobile platform going straight with a constant velocity. We
compare the result with and without predictions from the
MDN on the motion of the platform. In the second scenario,
shown in Fig. 8, a mobile robot tries to predict if a pedestrian
walking on the pavement will make a turn at a crossing
or continue walking forward. In this scenario, we compare
the result with predictions of future positions about the
pedestrians from the MDN and the KF.

In Fig. 7, 8, the red ellipses are the predictions. The
more transparent the ellipse is, the longer in the future the
prediction is made for. In both scenarios, the penalty for the
cross-track-error qcte is 50, and for the velocity deviation qv

TABLE I: Comparison among the KF, MDN, MDN-1 on the FTD
using the WMD metric. Here are the average values of WMD from
5000 samples. The best performance are shown in bold.

WMD
Approach Test 1 Test 2

Kalman filter 1.38 5.11
MDN-1 1.85 3.62
MDN 1.94 3.85

is 20. A video of the controlled behavior is available2.
1) Plan without and with predictions of dynamic obsta-

cles: Fig. 7 demonstrates the necessity to include predictions
of dynamic obstacles for the mobile robot. The working
platform moves from the left to the right side of the map.
Without any prediction, as shown in Fig. 7a, 7b, 7c, 7d, the
robot fails to avoid the collision due to too late actions. In
Fig. 7e, 7f, 7g, 7h, the robot avoids the collision with the help
of predictions from the MDN. In this scenario, the KF and
MDNs achieve the same result, since the mobile platforms
follows the CV model.

2) Plan with single-modal and multimodal predictions of
dynamic obstacles: Fig. 8 shows the significance of consider-
ing multimodality. A pedestrian walking on the sidewalk may
take a turn to cross the lane or continue straight forward. In
Fig. 8a, 8b, 8c, 8d, the KF cannot foresee that the pedestrian
turns, resulting in a collision since the mobile robot does not
take the turn into account during trajectory planning. The
covariance matrix of the observation noise is set to be an
identity matrix, giving a prediction with a larger variance
compared with the one from MDN. However, the MDN
learned this motion pattern from past trajectories and predicts
two modes of the motion of the pedestrian: going straight and
turning left, as shown in Fig. 8e, 8f, 8g, 8h. Then the NMPC
controller corrects the trajectory according to the turning-left
mode of the pedestrian and avoids the collision successfully.

V. CONCLUSIONS

We have shown how multimodal motion prediction, based
on mixture density networks that learn behaviors of obsta-

2https://youtu.be/ficYIO8y04k

https://youtu.be/ficYIO8y04k
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Fig. 8: The upper half, Fig. 8a, 8b, 8c, and 8d, shows the path adjusted by the NMPC controller with predictions from the KF, which
cannot avoid the collision with the pedestrian. The lower half, Fig. 8e, 8f, 8g, and 8h, shows the path adjusted by the NMPC controller
with predictions from the MDN, which considers the possibility that the pedestrian may turn and avoid the collision accordingly.

cles, can be utilized with a model predictive control strategy
for trajectory generation to avoid collisions with moving
obstacles. This method improves the ability of dynamic
obstacle avoidance for mobile robots by the chance of suc-
cess. The experiments, especially the multimodal prediction
scenario, demonstrate the feasibility of our method and the
fact that deep-learning-based motion prediction is superior
to traditional single-modal predictions such as the Kalman
filter by higher prediction accuracy when the test scenario
contains more possibilities of the motion of objects.
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